INTRODUCTION

This revised UK VHP framework is based on published evidence and guidelines (Moureau et al, 2012, Hallam et al, 2016). Evaluation studies of the original VHP Framework to date have included the uptake of the VHP Framework (Burnett et al, 2018) and a small-scale pilot study exploring the impact of using the framework on the insertion and management of VADs (Weston et al, 2017).

The framework has been developed to facilitate a complex adaptive systems approach to VAD insertion and managemen and is intended for adult vascular access in acute or planned settings. Whilst the principles of VHP should be incorporated into any emergency situation, it is recognised that other issues may take priority dependent on the condition of the patient and availability vascular access expertise therefore other immediate routes of access may be more appropriate e.g.

The evidence for each of the sections with references and signposting to further information can be accessed via the Quick Response (QR) code.

Vessel Health and Preservation: The Right Approach for Vascular Access edited by Nancy Moureau, is available on open access https://www.springer.com/f-book/9783030031480

GLOSSARY OF TERMS

CVAD – Central vascular access device

CVC – Central venous catheter

Midline - Long venous catheter inserted into arm veins which

does not extend centrally

IV - Intravenous route of access

PICC – Peripherally inserted central venous catheter

PIVC – Peripheral intravenous catheter

Tunnelled CVC - central venous catheter which is tunnelled away from exit site and has anchoring cuff

VAD - Vascular access device

VIP - Visual Infusion Phlebitis Score

VHP - Vessel health and preservation

REFERENCES

Burnett, E., Hallam, C., Curran, E. et al. (2018) Vessel Health and Preservation Framework: Use of the outcome logic model for evaluation. Journal of Infection Prevention, 19, pp.228-234

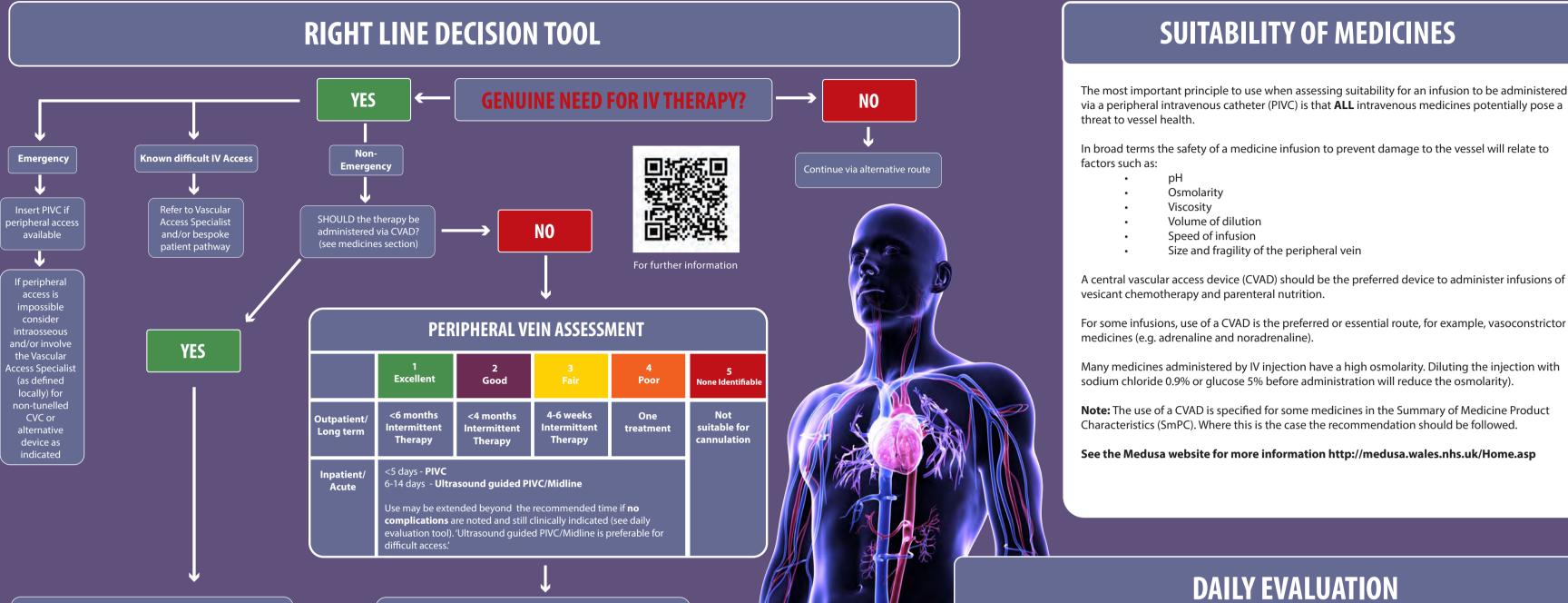
Chopra, V., Flanders, S.C., Saint, S. et al. (2015) The Michigan Appropriateness Guide for Intravenous Catheters (MAGIC): Results from a Multispecialty Panel Using the RAND/UCLA Appropriateness Method. Annals of Internal Medicine, 15 pp.S1-40

Hallam, C., Weston, V., Denton, A., Hill, S., Bodenham, A., Dunn, H., Jackson, T. (2016) Development of the UK Vessel Health and Preservation (VHP) framework: a multi-organisational collaborative. Journal of Infection Prevention, 17, pp.65–72

Loveday, H.P., Wilson, J.A., Pratt, R.J. et al. (2014). Epic3: National Evidence –Based Guidelines for Preventing Healthcare-Associated Infections in NHS Hospitals. Journal of Hospital Infection, S86, ppS1-S70

Moureau, N.L., Trick, N., Nifong, T. et al. (2012). Vessel health and preservation (Part 1): a new evidence-based approach to vascular access selection and management. Journal of Vascular Access, 13, pp.351–356

Ray-Barruel, G., Cooke, M., Chopra, V., Mitchell, M., Rickard, C. M. (2020). The I-DECIDED clinical decision- making tool for peripheral intravenous catheter assessment and safe removal: a clinimetric evaluation. BMJ Open, 10, pp.1-20. Downloaded from https://bmjopen.bmj.com/content/bmjopen/10/1/e035239.full.pdf Last accessed March 2020


Royal College of Nursing (RCN). (2016). Standards of Infusion therapy 4th Edition RCN. London

Taxbro, K., Hammarskjöld, F., Thelin, B. et al. (2019) Clinical impact of peripherally inserted central catheters vs implanted port catheters in patients with cancer: an open-label, randomised, two-centre trial. British Journal of Anaesthesia, 122, pp.734<u>-</u>741

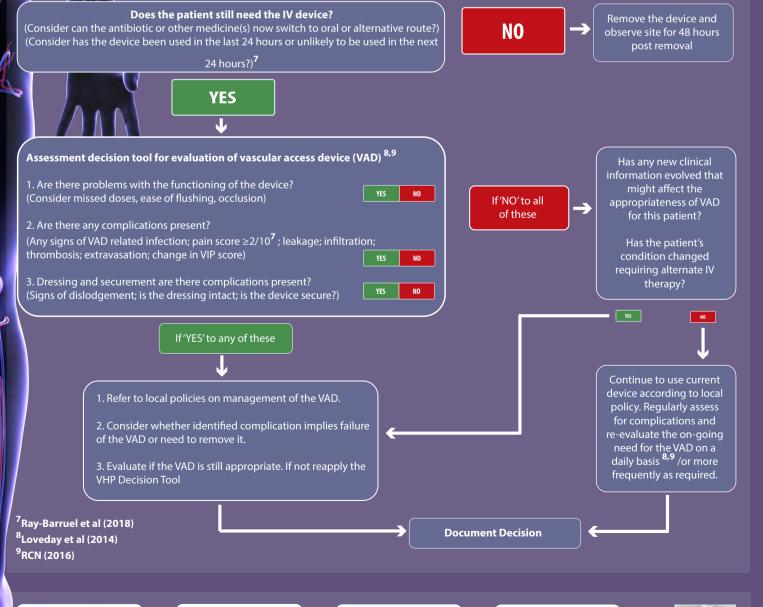
van Loon, F., van Hooff, L., de Boer, H. (2019) The Modified A-DIVA Scale as a Predictive Tool for Prospective Identification of Adult Patients at Risk of a Difficult Intravenous Access: A Multicenter Validation Study. Journal of Clinical Medicine. 8.

Weston, V., Nightingale, A., O'Loughlin, C. et al. (2017) The implementation of the Vessel Health and Preservation framework. British Journal of Nursing (IV Therapy Supplement), 26,

UK VESSEL HEALTH AND PRESERVATION 2020

PERIPHERAL VEIN ASSESSMENT

Suitable Vein Definition; Visible and compressible, 3mm or larger


If Peripheral Vein grade not compatible with intended treatment duration, consider other type of vascular device

Grade	Number of suitable veins	Insertion Management
1	4-5 Veins	Insertion by trained competent healthcare practicioner (HCP)
2	2-3 Veins	Insertion by trained competent HCP
3	1-2 Veins	Insertion by trained competent HCP
4	No palpable visible veins	Ultrasound guided cannulation, by trained competent HCP, once only cannulation
5	No suitable veins with ultrasound	Refer for alternative vascular access device
Known difficult IV access patient must be referred to an IV specialist and will require an individualised pathway		

⁴van Loon et al (2019) The number of attempts for cannulation before escalation should be reflected in local policy

Referal process to be determined locally

DAILY EVALUATION

NIVAS
National Infusion and

England

• Local availability of vascular competency. • Need for long term dialysis with: AV fistula, avoid vein damage from

¹Chopra et al (2015)

• Relevant past medical history: coagulopathy, severe respiratory dysfunction and other contra-indications to central access.

SECONDARY QUESTIONS

Secondary questions which may refine line choice in individual

• Known abnormalities of vascular anatomy which limit access site. • Therapy specifics: e.g. intermittent vs continuous therapy, extreme

duration of therapy (months-years) specific indications (e.g. bone

• Patient preference: lifestyle issues and/or body image.

DURATION OF ANTICIPATED THERAPY?

• Patient factors: e.g. cognitive function.

PICC or Axillary/Subclavian catheters.

The risk benefits of individual device choice are starting to be challenged in large clinical trials³ with other studies in progress

³Taxbro et al (2019)

marrow transplant).

Infection Prevention Society

Sponsored by

Teleflex[®]